In-batch negatives 策略

WebIn-batch negatives 策略核心是在 1 个 Batch 内同时基于 N 个负例进行梯度更新,将Batch 内除自身之外其它所有 Source Text 的相似文本 Target Text 作为负例,例如: 上例中 我手机 … Web对比可以发现,首先利用 ERNIE 1.0 做 Domain-adaptive Pretraining,然后把训练好的模型加载到 SimCSE 上进行无监督训练,最后利用 In-batch Negatives 在有监督数据上进行训练能获得最佳的性能。 3.5 向量召回 终于到了召回,回顾一下,在这之前我们已经训练好了语义模型、搭建完了召回库,接下来只需要去库中检索即可。 代码位于 …

Pytorch Loss Function for in batch negative sampling and …

WebOct 18, 2024 · In-batch Negatives,一般在单GPU中,批次内每个问题仅有一个正样例(相关的passage),其它均为负样例。 这是一种内存高效的方法。 只需重用批次中已加载的负例而不需要重新采样负样例,这也增加了每个问题的负样例数量; Cross-batch Negatives,在多GPU上,首先通过每个GPU计算passage的嵌入,然后在所有GPU中共享passage的嵌 … WebMay 30, 2024 · 首先是利用 ERNIE 1.0 模型进行 Domain-adaptive Pretraining,在得到的预训练模型基础上,进行无监督的 SimCSE 训练,最后利用 In-batch Negatives 方法进行微调,得到最终的语义索引模型,把建库的文本放入模型中抽取特征向量,然后把抽取后的向量放到语义索引引擎 milvus 中,利用 milvus 就可以很方便得实现召回了。 排序 :使用 ERNIE … canon printer projects https://mauerman.net

效果提升28个点!基于领域预训练和对比学习SimCSE的语义检索

WebAug 5, 2024 · 负例构造:使用in-batch negatives的方式,即随机采样一个batch中另一个输入作为的负例。 说白了就是batch中其他的样本就是负例。 损失如下: image.png 而且这种dropoutmask 比数据增强也强很多,文章中实验指标如下: image.png 为什么会强这么多呢? 这是个好问题 可能是,增强嘛,无非对输入的原始词做改变,无论是删除,替换,回译 … WebApr 13, 2024 · 将batch_size的大小从128更改为64; 训练了75轮之后的效果如下: 总结. DDPG算法是一种受deep Q-Network (DQN)算法启发的无模型off-policy Actor-Critic算法。它结合了策略梯度方法和Q-learning的优点来学习连续动作空间的确定性策略。 WebJul 14, 2024 · 策略1:在用户未点击的部分,选择流行度高的作为负样本(更有代表性) 策略2:在用户未点击的部分,删除用户近期已发生观看行为的电影 策略3:在用户未点击的部分,统计相应的曝光数据,取Top作为负样本(多次曝光仍无转化) Q2:正负比例有个大致的主流数值吗? 1? 5? 10? A2:建议交叉验证后选择合适的数值 Q3:测试集是否需要 … canon printer product registration

NLP产业应用实战,评论观点抽取与分析和文本语义检索深度详解

Category:GitHub - zejunwang1/bertorch: 基于 pytorch 的 bert 实现和下游任 …

Tags:In-batch negatives 策略

In-batch negatives 策略

双塔模型中的负采样 - 知乎 - 知乎专栏

Web为了解决这个问题,在构建负样本的时候用到了ITC任务,在一个batch里,通过计算特征相似度,寻找一张图片除它本身对应的文本之外相似度最高的文本作为负样本。这样就能构建一批hard negatives,从而提升训练难度。 ... 更新策略见下图,是一个滑动平均的过程 ... WebJan 13, 2024 · 3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考 …

In-batch negatives 策略

Did you know?

Web首先是利用 ERNIE模型进行 Domain-adaptive Pretraining,在得到的预训练模型基础上,进行无监督的 SimCSE 训练,最后利用 In-batch Negatives 方法进行微调,得到最终的语义索 … WebDec 7, 2024 · 值得关注的是, 在单独的 pairwise loss 的监督下使用 TAS 策略其实并不能带来明显的提升,这是因为 TAS 是面向 in-batch negative loss 设计的,使用 pairwise loss 训练时,batch 内的样本是没有交互的,因此 TAS 也就不会起作用。而 TAS-balanced 策略会影响正负样本对的组成 ...

WebApr 19, 2024 · 模型优化策略和效果 本方案的NLP核心能力基于百度文心大模型。 首先利用文心 ERNIE 1.0 模型进行 Domain-adaptive Pretraining,在得到的预训练模型基础上,进行无监督的 SimCSE 训练,最后利用 In-batch Negatives 方法进行微调,得到最终的语义索引模型,把语料库中的文本放入模型中抽取特征向量,进行建库之后,就可以很方便得实现召回 … WebSep 14, 2024 · Cross-batch Negatives 具体来说,并行训练时首先计算每个 GPU 内的段落embedding,然后共享这些embedding到所有 GPU 中。 即通过从其他 GPU 收集段落来作为每个问题的附加负样本以增加负样本的规模。 单 GPU 和多 GPU 都可以应用Cross-batch Negatives。 只有一个 GPU 可用时,可以通过累加的方式实现,同时权衡训练时间。 …

WebJul 8, 2024 · This way we are using all other elements in batch as negative samples. Optionally one can also add some more random negative samples as well (as done … WebEffectively, in-batch negative training is an easy and memory-efficient way to reuse the negative examples already in the batch rather than creating new ones. It produces more …

WebJan 13, 2024 · 3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考 …

WebDec 31, 2024 · When training in mini-batch mode, the BERT model gives a N*D dimensional output where N is the batch size and D is the output dimension of the BERT model. Also, I … flag white blue red horizontal linesWebDec 22, 2016 · 优化方法系列 Batch的好处 当训练数据太多时,利用整个数据集更新往往时间上不显示。batch的方法可以减少机器的压力,并且可以更快地收敛。 当训练集有很多冗 … flag white blue red starWeb3.在有监督的文献数据集上结合In-Batch Negatives策略微调步骤2模型,得到最终的模型,用于抽取文本向量表示,即我们所需的语义模型,用于建库和召回。 由于召回模块需要从千万量级数据中快速召回候选集合,通用的做法是借助向量搜索引擎实现高效 ANN,从而实现候选集召回。 这里采用Milvus开源工具,关于Milvus的搭建教程可以参考官方教程 … canon printer pulling paper one side推荐模型中双塔模型早已经普及.一个塔学用户表达.一个塔学item表达.很多双塔模型用各种各样的in-batch负采样策略.十方也是如此.往往使用比较大的batchsize,效果会比较好,但是由于内存限制,训练效率会比较低.这篇论文《Cross-Batch Negative Sampling for Training Two-Tower Recommenders》发现encoder … See more 双塔模型中的负采样 See more flagwhite cafeWeb对上一步的模型进行有监督数据微调,训练数据示例如下,每行由一对语义相似的文本对组成,tab 分割,负样本来源于引入 In-batch Negatives 采样策略。 关于 In-batch Negatives 的细节,可以参考之前的文章: 大规模搜索+预训练,百度是如何落地的? flag white blue red horizontal stripesWeb而Batch Normalization其实主要就是在解决这个问题。. 除此之外,一般的神经网络的梯度大小往往会与参数的大小相关(仿射变换),且随着训练的过程,会产生较大的波动,这就 … flag white blue red stripe horizontalWebJan 12, 2024 · In-batch negatives 假设在一个mini-batch中有 B 个questions,每个question都与一个相关的passage相关联。 设 Q 和 P 为一批总量为 B 的questions … canon printer reads offline